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1. INTRODUCTION

The basic characteristic of an insurance portfolio is its heterogeneity, which means 
that individual risks generate different claim amounts. In view of this, assigning a sin-
gle premium to each risk is unfair. Therefore, a common practice of any insurance 
company is ratemaking, which is defined as the process of classification of the risk 
portfolio into risk groups where the same premium corresponds to each risk. The gro-
uping is done based on what is referred to as risk factors, which cause the portfolio 
homogeneity. The risk factors may be divided into:
– observed factors (observed at the conclusion of an insurance contract) – these are the

factors that describe an insured person and an insurance subject, as well as a spatial
variable (in the sense of the geographical region),

– unobserved factors – such as a driver’s skills, the safety of a district where a property
is located, a factor specific to each risk treated as a random variable with a certain
distribution.
The current practice of insurance companies is to carry out ratemaking in two

stages determined by the risk factors that are taken into consideration (cf. Dionne, 
1989). The first stage is a priori ratemaking, which means dividing the risk portfolio 
into groups of risks that are homogeneous in terms of the observed factors. Then 
a posteriori ratemaking is carried out, when the unobserved risk factor is taken into 
account individually for each risk.

The ratemaking problem comes down to determining a premium for a homoge-
neous risk group, where a premium is understood as the expected total claim amount 
for a single risk. In the estimation, two separate models – the average value of claims 
(called a claim severity model) and the number of claims (called a claim frequency 
model) – are applied to a single risk. Due to the character of risk portfolios and 
insurance data, a common practice applied by insurance companies is to use general-
ized linearized models (GLM’s – cf. De Jong, Heller, 2008; Frees, 2009; Ohlsson, 
Johansson, 2010; Antonio, Valdez, 2012; Wolny-Dominiak, Trzpiot, 2013; Wolny-
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-Dominiak, 2014). Owing to the progress in numerical algorithms for finding maxi-
mum values of the log-likelihood function and their numerical implementation in 
commercial and non-commercial software, GLM’s have become a common practice 
in the Polish insurance market as well. 

The above approach to ratemaking requires the independence between an average 
value of claims and the number of claims. The reason for this is that the expected 
total claim amount is understood as the product of the expected claim frequency and 
the expected claims severity. However, in the literature this assumption is called into 
question, as in Krämer et al. (2013) or Shi et al. (2015). The dependence between two 
random variables is accommodated by the copula and the authors propose a copula-
based regression model in order to estimate the total claim amount. The interest of this 
paper is to extend this model taking into account an unobservable risk factor in the 
claim frequency model. This factor, called also unobserved heterogeneity, is treated 
as a random variable influencing the number of claims. Typically, in such a situation 
a mixed Poisson distribution is assumed, but for our purposes we propose to apply 
the zero-truncated distribution. The goal is then to estimate the expected value of the 
product of two random variables: the average value of claims and the number of claims 
for a single risk assuming the dependence between the average value of claims and 
the number of claims for a single risk and the dependence between the number of 
claims for a single risk and the unobservable risk factor. In the model, we construct 
the bivariate distribution, which gives us the opportunity to estimate this expected 
value using the Monte Carlo (MC) simulation. 

In the paper we give the details of the theoretical aspects of the model as well as 
the empirical example. To acquaint the reader with the model operation, every step of 
the process of the expected value estimation is described and the R code is available 
for download (see http://web.ue.katowice.pl/woali/ and R code Team, 2014). 

2. TOTAL CLAIM AMOUNT MODEL UNDER INDEPENDENCE

A starting point for a priori ratemaking is the total claim amount model, in which 
the random variables – the average value of claims and the number of claims for 
a single risk – are independent. Consider a portfolio of n property risks where the risk 
is understood as a random variable with a certain distribution, hereinafter denoted as Si, 
i = 1,…,n, representing the total claim amount for the i-th risk. If the number of claims 
for the i-th risk in the portfolio is marked as Ni and if i denotes the value of a single 
claim, the variable Si may be expressed in the following form:

 , Si = 0 if Ni = 0. (1)

The considerations presented below take into account only the risks for which at least 
one claim has occurred. Assuming that variables , are independent and have 
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identical distributions, and that they are independent of Ni, the expected value and the 
variance of variable Si may be expressed as follows:

  (2)
 

The expected value E[Si] corresponds to the so-called pure premium for a single risk. 
This is the premium covering the risk, without any additional costs of insurance. 
If an insurance company has a mass portfolio of risks, which is the case for example 
in motor third part liability (MTPL) and motor own damage (MOD) insurance or in 
immovable property insurance, the claim frequency model and the claims severity 
model are used to estimate the pure premium E[Si]. The parameters of the models are 
estimated using data included in insurance policies. This practice is described in detail 
in works authored by, for example, De Jong, Heller (2008), Frees (2009), Ohlsson, 
Johansson (2010), Cizek et al. (2011). 

Modelling the total claim amount (not the pure premium) for a single risk, the 
following assumptions are commonly made in this approach: 
– In the claim frequency model the number of claims for a single risk has the Poisson 

distribution Ni ~ Pois(λi),
– In the claim severity model variables Yik have identical distributions coming from 

the exponential dispersion family of distributions with the same dispersion parameter 
Yi ~ EDM(μi,φY).
The heterogeneity of an insurance portfolio is described by regression coefficients 

introduced to the mean of both models: 

  (3)

where ,  are fixed-effect vectors cor- 

responding with observed risk factors; ,  are i-th rows of the matrix of models 
XY and XN, respectively. Ei denotes the risk exposure (typically – the time of the policy 
duration). Then the total claim amount for a single risk is simply: 

 . (4)

It should be noticed that if no claim has occurred for the i-th risk, the number of 
claims Ni = 0, which means, naturally, that the value of variable Yi should also be zero. 
However, only the average claim non-zero value is assumed in the claims severity 
model. Therefore, the zero-truncated distribution of the number of claims is assumed 
in the case under analysis. Assuming the Poisson distribution for the number of claims, 
the probability mass function with deleted zero values has the following form:
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  (5)

where . The expected value and the variance 

are  and  respectively 

(cf. Cruyff, van der Heijden, 2008). 
The parameters of frequency and severity models are usually estimated separately, 

using the maximum likelihood method. Finally, the estimated value of the expected 
total claim amount is obtained in the point estimation by plugging in coefficient esti-
mators into formula (4). The same strategy can be used with respect to the variance 
value taking the formula (2).

Example 1 – total claim amount model under independence
In order to demonstrate the current practice, the insurance portfolio taken from 

(Wolny-Dominiak, Trzesiok, 2014) is investigated herein. The data comes from the 
former Swedish insurance company Wasa and concerns partial casco insurance for 
motorcycles in the period of 1994–1998. The frequency and severity models are 
assumed as Yi ~ Gamma(μ,φY) and Ni ~ ZTPois(λ) without regressors. We use the 
maximum likelihood method (MLE) in the estimation. The fitted parameters are pre-
sented in table 1 below.

Table 1. 
Estimates of parameters in claim severity-frequency model

Model Parameters Mean Variance

Severity

Frequency (without exposure)

Source: own calculations.

Plugging values from table 1 into formula (4), estimated characteristics of the total 
claim amount are obtained. The quantiles of Ê [Si] are presented in figure 1, taking into 
account the exposure to each risk.

The left-hand figure displays quantiles of the order from 0 to 0.95, while the 
right-hand one – quantiles of the order from 0.95 to 1.

Insurance companies use the above-described practice only if an assumption is 
made that the claim amount value Yi is independent of the claim number Ni for the 
risk. If this assumption is rejected, a dependence between variables has to be accom-
modated. And this could be done using a copula. 
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Figure 1. Quantiles of total claim amount
Source: own calculations.

3. DEPENDENCE WITH BIVARIATE COPULAS

The theory of copulas is frequently referred to in literature as in Joe (1997), Nielsen 
(1999), Wanat (2012). Here we give a short introduction for those who are not familiar 
with the subject. A bivariate copula C(·) is a two-dimensional cumulative distribution 
function (cdf) C : [0, 1] x [0, 1] → [0, 1] whose univariate margins are uniform on 
[0, 1]. For continuous random variables (X1, X2) with marginal cdf’s F1(·), F2(·) and 
densities f1(·), f2(·), random variables of the form U1 = F1(X1), U2 = F2(X2) are also 
uniform on [0, 1]. According to the Sklar theorem (1959):

 . (6)

Hence, the joint distribution F(·) is decomposed into marginal distributions and the 
copula C(u1, u2), which captures the structure of the relation between X1 and X2. The 
corresponding joint density  is then as follows:

 , (7)

where c(·) denotes the copula density. 
Generally, if a bivariate cdf of (X1, X2) exists, also a bivariate copula C(·) exists, 

and in the case of continuous random variables the copula is unique. However, the 
model proposed herein assumes mixed continuous and discrete variables. 

Let us assume N is the count variable with a density function fN(·) and consider 
a continuous-discrete random variable (Y, N). Let us focus on the parametric bivari-



Alicja Wolny-Dominiak314

ate copula with one parameter θ, such as the Gauss, Clayton or Frank copulas, which 
separates the dependence structure from margins. Denoting the partial derivative of 

the copula with respect to variable Y as , u1, u2 ∈ (0, 1), 

according to the formula (7), as is shown in Krämer et al. (2013) in the case of mixed 
outcomes, the joint density function fY,N(·) may be expressed as follows:

 . (8)

In order to construct the above density function, the parameter vector of marginal 
distributions has to be estimated as well as the copula parameter θ. The inference func-
tions for margins (IFM) method is used in this paper. It consists in estimating univariate 
parameters from separately maximized univariate likelihoods, and then estimating the 
copula parameter θ. Like in the above-described formula (8), only the margin of 
the first variable appears as the proper log-likelihood function giving the estimated 
value of θ in the following form:

 . (9)

Hence, the IFM method consists of three main steps (A1):
1. obtaining estimates of the vector parameters of margins,
2. transforming (yi, ki) to (u1i, u2i) as 
 , 

3. optimizing .

The example below illustrates the construction of density function fY, N(y, k) for 
different types of one-parameter copulas C(·|θ). 

Example 2 – copula-based bivariate density construction
This example makes use of simulated data. The margins are taken as: 

Y ~ Gamma(μ, ϕY) with a mean μ and a dispersion ϕY and N ~ Poisson(λ) with 
a mean λ. Data (yi, ki), i = 1,…,100 are drawn from Gamma(μ = 300, ϕ = 1.5) and 
Poisson(λ = 1). Assuming the parameter vector of margins as (300, 1.5, 1), observa-
tions (yi, ki) are transformed into (u1i, u2i) in the following way:

  (10)

assuming that ki = 0 for ki < 0. Finally, the copula parameter θ is estimated using 
the Gauss and Frank copulas and the copula-based density function fY, N(·) is  
constructed. 
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Fig. 2. Bivariate density of the random variable (Yi, Ni)
Source: own calculations.

The IFM method is useful for models with the closure property of parameters being 
expressed in lower-dimensional margins. In addition, due to the fact that each inference 
function derives from a log-likelihood of a marginal distribution, the inference does 
not have to be obtained explicitly and numerical optimizations can be carried out for 
the log-likelihoods of margins. For this purpose, the BFGS algorithm implemented in 
R is used in this paper (see optim function). 

4. COPULA-BASED TOTAL CLAIM AMOUNT MODEL

If it is assumed that the average claim value Yi and the number of claims Ni are 
dependent random variables, the total claim amount Si is defined as the following 
product:

 Si = Yi Ni,   i = 1,…,n. (11)

The variable obtained in this way is a continuous variable with positive values. 
Due to the occurrence of interrelations between random variables Yi, Ni, the expected 
value of variable Si has the following form:

 [̂Si] = E[Yi Ni], (12)

which means that the frequency-severity model does not apply here. Using therefore 
the basic formula for the expected value, the following is obtained:

 , (13)



Alicja Wolny-Dominiak316

where si = yi, ki, yi > 0, ki = 1, 2, 3,…, and fS(·) is the density function of the varia-
ble Si. If it is assumed that the relation between variables Yi, Ni is described by the 
copula C(·|θ), then according to theorem 6 in Krämer et al. (2013) the distribution of 
the total claim amount is given by the following density function:

 
  (14)

for si > 0. It can be seen that the function has a complex form and the expected value 
E[Si] cannot be determined analytically and a numerical procedure has to be used. 
This paper puts forward the following algorithm (A2):
1. obtaining the vector parameters of margins and the copula parameter C(·|θ) using 

the IFM method (φY, φN, θ)' under the assumption of the family of copulas,
2. obtaining the value of  according to (14).
It gives the opportunity to obtain the value of expectation E[Si] and the value of 

variance  through numerical integration.

The advantage of the proposed procedure is its flexibility. Any model can 
be used to determine the initial values needed to estimate the copula parameters 
in point 1. In the case of insurance applications, it is convenient to adopt the fre-
quency and severity model with the independence assumption (cf. Section 2 above). 
Unfortunately, the downside of the algorithm is its relatively slow operation, which 
is the effect of the need to sum up in step 2 and perform numerical integration 
in steps 3 and 4.

Example 3 – estimation of the total claim amount expectation using the copula-
-based model without unobserved heterogeneity

The model is illustrated using the same portfolio as in Example 1, but the structure 
of the relation between Yi and Ni changes. It is accommodated by the two-dimen-
sional copula C with the parameter θ. Assuming margins Yi ~ Gamma(μi,φY) and 
Ni ~ ZTPois(λ), the algorithm (A2) is run in the case of four families of parametric 
bivariate copulas: the Gauss, Clayton, Gumbel and Frank copulas. As the IFM method 
is applied, the parameters of margins are the same as in Example 1. Using these val-
ues, the copula parameters and the corresponding Kendall coefficient τ are obtained. 
The results are listed in table 2.
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Table 2. 
Estimation of Kendall’s tau and copula parameter

Copula Gauss Clayton Gumbel Frank

θ̂ 0.48 2.8) 1.21 4.71

τ̂ 0.32 0.58 0.17 0.44

Source: own calculations.

Based on the estimators presented above and using formula (14), the copula-based 
density of the total claim amount is constructed. Next, the expected values E[Si], 
i = 1,…,666 are estimated through numerical integration. Figure 3 displays histograms 
of Ê [Si] for different copulas. 

Figure 3. Histogram of expected total claim amount
Source: own calculations.

5. THE COPULA-BASED TOTAL CLAIM AMOUNT MODEL WITH AN INDIVIDUAL 
UNOBSERVABLE RISK FACTOR

Another starting point for a posteriori ratemaking are total claim amount models 
where the individual unobserved factor for the i-th risk, referred to as the risk profile 
(cf. Bühlmann, Gisler, 2005), is taken into account. This risk profile is usually taken into 
consideration in the claim frequency model using cross-sectional data (cf. Dimakos, 
Rattalma, 2002; Denuit et al., 2007; Boucher et al., 2007; Wolny-Dominiak, 2014) or 
longitudinal data (cf. Boucher et al., 2009; Wolny-Dominiak, 2014). It is well-known 
that this quantity is also affected by individual unobserved factors. One example is 
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motor insurance, where the unobserved factor is equated with a driver’s (an insured 
person’s) individual features that have an impact on a given risk loss burden. A driver 
with a strong aversion to driving fast, with little children etc., will display a weaker 
tendency towards causing claims to arise than a daring driver. Most frequently, the 
unobserved risk factor is treated as a realization of a certain random variable with 
a pre-set probability distribution. 

5.1. MARGINAL CLAIM FREQUENCY

Let us assume that the unobserved risk factor corresponding to unobserved het-
erogeneity defines the continuous random variable V with the density function fV(·) 
with the parameter vector φV. In the copula-based total claim amount model, a pro-
posal is made to introduce the factor into the marginal frequency model as a random 
effect V. Consequently, as in the mixed Poisson model (cf. Denuit et al., 2007), the 
parameter λi of the model ZTPois(λi) is randomized by λiV, which gives a conditional 
distribution of the number of claims Ni | V ~ ZTPois(λiV) with the mass probability 
function defined by the following formula:

  . (15)

The claim number distribution requires a transition from the conditional distribution 
to the marginal one. One possibility is the direct use of the conditional distribution 
and a formula for the infinite mixture of distributions of the number of claims and 
the unobserved factor:

 . (16)

As it can be seen, for any density function fV(·) the estimation of the distribution para-
meters is a complex task due to the occurrence of the random effect λiV. The direct 
use of formula (16) then requires numerical integration, which involves considerable 
lengthening of the computation time. Another possibility is to use the Expectation-
Maximization (EM) method, which is also rather time-consuming (cf. Karlis, 2001; 
Trzęsiok, Wolny-Dominiak, 2015). On the other hand, the probability function (16) can 
sometimes be determined analytically. One example is the popular negative-binomial 
(NB) distribution, which is a Poisson-Gamma distribution mixture. Assuming that 
V ~ Gamma(α) and Ni | V ~ ZTPois(λiV), the marginal distribution of the number of 
claims is a first-order NB distribution. 
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The zero-truncated distribution with an unobserved factor can be obtained easily 
in the same way as in the case of the ZTPois distribution.

 . (17)

For example, the zero-truncated NB (ZTNB) distribution has the following probability 
mass function:

 , (18)

where α > 0 is a dispersion parameter. The probability of the occurrence of zero is then: 

 and the expectation . 

In order to estimate ZTNB parameters one can use the MLE method. The log-likeli-
hood function is defined as follows:

  (19)

where regression coefficients are introduced into the model through the parameter 
.

 
Example 4 – parameter estimation and construction of a ZTNB distribution

To illustrate the ZTP model with unobserved heterogeneity Gamma distributed, 
which gives a ZTNB distribution, we simulate the sample n = 500 of the numbers of 
claims distributed as Ni ~ NB(λ = 2, α = 0.67). Then, we truncate the sample receiving 
zero-truncated data. Maximizing the log-likelihood (19) with the BFGS method, the 
estimated parameters are λ̂ = 1.91, α̂ = 0.64. Figure 4 provides the probability func-
tion and the cdf of the constructed ZTNB (equivalent to ZTP-Gamma) based on the 
NB with parameters (λ̂, α̂).
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Figure 4. The probability function and the cumulative distribution function of ZTNB
Source: own calculations.

5.2. TOTAL CLAIM AMOUNT

Proceeding to the copula-based total claim amount model with the unobserved 
factor, three random variables are considered: the average claim value Yi, the number 
of claims Ni and the unobserved factor V. The total claim amount is defined according 
to formula (2), except that the distribution of variable Ni is the marginal distribution 
of the two-dimensional variable (Ni, V). A proposal is made in this paper to determine 
the expected value of the total claim amount using the ZTNB distribution. It means 
that the unobserved factor is taken into account in the margin of the number of claims. 
The new procedure (A3) has the following steps: 
1. obtaining the vector parameters of the number of claims (λi, α) assuming 
 Ni ~ ZTNB(λi, α) and the regression component ,
2. obtaining the vector parameters of the average value of claims φY assuming 
 Yi ~ EDM(μi, φY) and the regression component ,
3. obtaining the copula parameter C(·|θ) using the IFM method under the assumption 

of the copula type,
4. obtaining the value of  according to (14).

The constructed density of the total claim amount for a single risk gives the 
opportunity to estimate a pure premium. In the example below the proposed model is 
illustrated using real data from a Polish insurance company. As data is confidential, 
one can use another database in the R code.
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Example 5 – total claim amount model with unobserved heterogeneity
We consider the portfolio that consists of 1,276 MOD (Motor Own Damage) poli-

cies insured in 2010 with the observed average value of claims Yi and the number of 
claims Ni for every policy. The exposure Ei is taken as the duration of the policy. The 
histograms of random variables are shown in figure 5. The right-hand side is generated 
by the product YiNi. The red lines represent the means.

Figure 5. Histograms of the average value of claims, 
the number of claims and total claim amount for single risk

Source: own calculations.

The portfolio consists of three categorical covariates. Details on the factors are 
given in table 3.

Table 3. 
Details on rating factors

Rating Factors Categories/Number of observations

POWER RANGE 0–66
269

67–124
803

125+
187

GENDER 0 (Female)
416

1 (Male)
843

PREMIUM_SPLIT 0 (No split)
754

1 (Split)
505

Source: own calculations.
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First, we analyze marginal models. As we see, the skew histogram of the average 
value of claims in the figure 4, the gamma distribution Yi ~ Gamma(μi,φY) is assumed. 
Figure 6 provides the boxplot divided according to the factor GENDER.

Figure 6. Boxplots of the average value according to the factor GENDER
Source: own calculations.

The Gamma assumption gives the opportunity to estimate the model parameters 
using the IWSL algorithm as in the standard practice in the GLM. As no claims policies 
are observed, the number of claims is modelled using the Ni ~ ZTNB(λi,α) distribution. 
It allows us to take into account unobserved heterogeneity in the total claim amount 
estimation. In order to estimate the model parameters and fit the claim frequency, we 
use the numerical optimization in the MLE method taking the log-likelihood function 
as in the formula (19).

All three coefficients are statistically significant according to the Wald test, but 
only in the GLM Gamma. For the number of claims no factors have significant coef-
ficients on a level of 0.05. Therefore, we estimate λ parameter to be the same for every 
policy. The regression coefficient estimators in GLM Gamma are presented in table 4. 

Table 5 shows fitted values of the average value of claims for all combinations 
of regression coefficients.

We observe a relatively high variability in the fitted claims amount. The lowest 
value is given by the cars with low power and a female driver, who pays the premium 
without splitting the payment, while the highest value is generated by high-power cars 
and a male driver paying in instalments.
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Table 4. 
GLM Gamma parameters

Rating Factors β̂j Standard error

Intercept 8.65 0.13

POWER RANGE (0–66) -0.52 0.15

POWER RANGE (67–124) -0.40 0.13

GENDER (1) 0.27 0.10

PREMIUM_SPLIT (1) 0.27 0.10

Dispersion parameter ϕ̂ = 1.37 -

Source: own calculations.

Table 5. 
The fitted average value of claims Ŷ i in groups

POWER RANGE.GENDER.PREMIUM SPLIT Fitted value

125+.0.0 4582.11

66-.0.0 3650.85

67-124.0.0 3957.34

125+.1.0 5278.62

66-.1.0 4205.80

67-124.1.0 4558.88

125+.0.1 5132.54

66-.0.1 4089.42

67-124.0.1 4432.72

125+.1.1 5912.72

66-.1.1 4711.03

67-124.1.1 5106.52

Source: own calculations.

Afterwards we analyze the number of claims for a single risk. In order to take 
into account the unobserved factor, the distribution is assumed as Ni ~ ZTNB(λi,α). No 
factors have significant coefficients on a level of 0.1. Therefore, we estimate λ param-
eter, the same for every policy, receiving λ̂ = 0.0003, α̂ = 461.95 with standard errors 
equal to 120.1 and 0.23 respectively. Thus, plugging this values into the EZTNB[Ni] 
and multiplying by the exposure Ei the expected number of claims for a single risk is 
obtained. In the portfolio only 35 risks are not covered in the whole period (Ei < 1). 
Hence, most risks have Ê ZTNB[Ni] = 1.08 with Ei = 1.

Using the received estimated values of parameters we consider four type of copu-
las: Gaussian, Clayton, Gumbel and Frank. Maximizing the log-likelihood (9) we 
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choose the Gumbel copula with fitted θ̂ = 1.19, which is equivalent to Kendall’s 
τ = 0.16. This type of the copula gives the smallest AIC value.

Finally, we construct the copula-based density of the total claim amount fS(·) 
according to the formula (14) and using estimated parameters μ̂i, Ê ZTNB[Ni], θ̂. It gives 
us full information about this random variable and the possibility of estimating the 
expected value of the total claim amount. Figure 7 on the left-hand side provides the 
plots of values of the density for risks from the analyzed portfolio. For comparison, we 
also present the density plot based on the kernel estimation (cf. Sheather, Jones, 1991).

Figure 7. The density of total claim amount 
Source: own calculations.

Figure 8. Copula-based density of total claim amount in groups
Source: own calculations.
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In figure 8, we notice that the distributions in all groups are generally left-
skewed. This is natural, as the margins of the average value of claims are Gamma 
distributed. 

After that the copula-based expected total claim amount is determined using the 
MC simulation. This simulation provides values Ê [Si] received via numerical integra-
tion. Figure 9 provides the summary. 

Figure 9. Expected total claim amount – MC integration
Source: own calculations.

The results show that values received in the copula-based model are slightly higher 
than the values in the model under the independence assumption. This fact is observed 
in the histograms as well as in the quantile plots. It can suggest that models commonly 
applied by insurance companies underestimate total claim amounts and hence pure 
premiums for a single risk. To visualize the variability of the expected total claim 
amount in groups according to the combinations of regressors taken in the Gamma 
GLM, the boxplot is displayed in figure 10. 

It shows low variability in all groups appearing rather for risks with the low 
value of the claim amount. Except that the means (the black dots) are decisively 
higher for males with power 125+ than for females with any power, which is the 
intuitive result.
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Figure 10. Copula-based expected total claim amount in groups
Source: own calculations.

6. CONCLUSIONS

In this paper, we model an average value of claims and the number of claims in 
the case of dependence between both random variables. The proposed model provides 
exact distributions of individual total claim amounts, which tend to be left-skewed. 
Moreover, we also show how to numerically construct the density of the bivariate 
random variable. This gives the possibility of estimating the expected total claim 
amounts in the portfolio using e.g. MC integration in pricing. As we use the ZTNB 
distribution, heterogeneity is taken into account. It corresponds to credibility repre-
senting the unobservable factor influencing the number of claims for a single risk. 
However, there are no obstacles to use another mixed Poisson model (cf. Karlis, 
2001; Wolny-Dominiak, Trzęsiok, 2015). Nowadays the statistical modelling cannot 
do without computation, so the numerical examples discussed in this paper required 
strong programming work. Therefore, the full R code with a complete description is 
available for download. 
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REGRESYJNY MODEL ŁĄCZNEJ WARTOŚCI SZKÓD
Z UWZGLĘDNIENIEM NIEOBSERWOWALNEGO CZYNNIKA RYZYKA

S t r e s z c z e n i e

W masowych portfelach ryzyk zakłady ubezpieczeń przeprowadzają tzw. taryfikację, której celem 
jest wyznaczenie składki czystej dla pojedynczego ryzyka. Modele statystyczne stosowane obecnie 
w praktyce należą najczęściej do klasy uogólnionych modeli liniowych (GLM), w których szacuje się 
w osobnych modelach wartości oczekiwane dwóch zmiennych losowych: średniej wartości szkody oraz 
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liczby szkód dla ryzyka. Składka czysta definiowana jest wtedy jako iloczyn uzyskanych wartości. Takie 
podejście wymaga założenia niezależności pomiędzy rozpatrywanymi dwoma zmiennymi losowymi. 
Jednak w literaturze to założenie jest podważane. Celem tego artykułu jest zaproponowanie modelu 
z kopulą uwzględniającego nieobserwowalny czynnik ryzyka w modelowaniu liczby szkód. Model ten 
służy do oszacować oczekiwanej wartości iloczynu dwóch zmiennych losowych: średniej wartości szkody 
oraz liczby szkód dla pojedynczego ryzyka przy założeniu zależności oraz występowaniu czynnika 
nieobserwowalnego. W pracy szczegółowo opisano aspekty teoretyczne związane z budową modelu 
oraz szacowaniem wartości oczekiwanej. Ponadto w licznych przykładach przedstawiono numeryczne 
rozwiązania obliczeniowe w programie R. Dodatkowo udostępniono kody programu R na stronie inter-
netowej http://web.ue.katowice.pl/woali/.

Słowa kluczowe: taryfikacja, GLM, nieobserwowalny czynnik ryzyka, kopula

THE COPULA-BASED TOTAL CLAIM AMOUNT REGRESSION MODEL
WITH AN UNOBSERVED RISK FACTOR

A b s t r a c t

Nowadays a common practice of any insurance company is ratemaking, which is defined as the 
process of classification of the mass risk portfolio into risk groups where the same premium corresponds 
to each risk. As generalised linear models are usually applied, the process requires the independence 
between the average value of claims and the number of claims. However, in literature this assumption 
is called into question. The interest of this paper is to propose the copula-based total claim amount 
model taking into account an unobservable risk factor in the claim frequency model. This factor, called 
also as unobserved heterogeneity, is treated as a random variable influencing the number of claims. 
The goal is to estimate the expected value of the product of two random variables: the average value 
of claims and the number of claims for a single risk assuming the dependence between the average 
value of claims and the number of claims for a single risk and the dependence between the number of 
claims for a single risk and the unobservable risk factor. We give details of the theoretical aspects of 
the model as well as the empirical example. To acquaint the reader with the model operation, every step 
of the process of the expected value estimation in described and the R code is available for download, 
see http://web.ue.katowice.pl/woali/. 

Keywords: ratemaking, GLM, unobserved factor, copula 




